Dynamic scaling function at the quasiperiodic transition to chaos
نویسندگان
چکیده
منابع مشابه
Piecewise linear models for the quasiperiodic transition to chaos.
We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non-trivial but essentially solvable models for the phenomenon of mode locking and the quasiperiodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for ...
متن کاملQuasiperiodic graphs at the onset of chaos.
We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identi...
متن کاملTransition to High-Dimensional Chaos through quasiperiodic Motion
In this contribution we report on a transition to high-dimensional chaos through three-frequency quasiperiodic behavior. The resulting chaotic attractor has a one positive and two null Lyapunov exponents. The transition occurs at the point at which two symmetry related threedimensional tori merge in a crisis-like bifurcation. The route can be summarized as: 2D torus → 3D torus→ high-dimensional...
متن کاملScaling collapse at the jamming transition.
The jamming transition of particles with finite-range interactions is characterized by a variety of critical phenomena, including power-law distributions of marginal contacts. We numerically study a recently proposed simple model of jamming, which is conjectured to lie in the same universality class as the jamming of spheres in all dimensions. We extract numerical estimates of the critical expo...
متن کاملFinite-size scaling at the jamming transition.
We present an analysis of finite-size effects in jammed packings of N soft, frictionless spheres at zero temperature. There is a 1/N correction to the discrete jump in the contact number at the transition so that jammed packings exist only above isostaticity. As a result, the canonical power-law scalings of the contact number and elastic moduli break down at low pressure. These quantities exhib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica D: Nonlinear Phenomena
سال: 1994
ISSN: 0167-2789
DOI: 10.1016/0167-2789(94)90084-1